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INTRODUCTION 

Shortly after the "boron hydrides were discovered it was 

found that they presented a serious problem in valence in so 

far as the Lewis electron pair theory (1) was concerned. 

These compounds have fewer electron pairs than valence bonds 

and thus the term "electron deficient compoundsn arose. For 

some time thereafter it was thought that the boron hydrides 

were unique ; however, it is quite clear now that they are not. 

Dimeric trimethylaluminum, polymeric dimethylberyllium, tetra-

methylplatinum and many organo-metallic compounds belong to 

this class (2). As a matter of fact, interstitial compounds 

and even metals can be included with electron deficient com­

pounds (3)• With this knowledge at hand we can now make a 

general statement on electron deficient compounds;. 

Electron deficient compounds arise when an atom (usually 

a metal) with more low energy orbitals than valence electrons 

combines with an atom or group containing no unshared elec­

tron pairs. The metal atom then tends to make use of all its 

low energy orbitals to form delocalized bonds (4a,b). 

Probably the best known and for a time the most contro­

versial electron deficient compound was diborane. Doubt 

existed whether this molecule had the ethane (D̂ ) structure 

or ethylene (D2̂ ) structure. After others (5) had made some 

convincing arguments, F. C. Price (6) convincingly showed, 

from a vibrational analysis of the perpendicular bands be­
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tween 2600 cm.~"L acd 960 cm.""*- that the molecule must have 

D2̂  symmetry. This structure was later confirmed by elec­

tron diffraction (7) which gave the presently accepted bond 

parameters. However, even once the structure was known with 

certainty the bonding was not clearly understood. Pitzer (5c, 

8) likened the bridge to a protonated double bond. At least 

the wording contradicts chemical (9) and proton magnetic 

resonance data (10) that the bridge protons are relatively 

negative. More important, the structure of the higher boron 

hydrides predicted from this idea are incorrect, primarily 

because all the low energy orbitals of boron are not utilized. 

The bridge in diborane has been well described by a 

number of writers (11) in terms of three-center molecular 

orbitals. We shall here describe the bridge as a four-center 

four-electron problem similar to the description of Hamilton 

(12) and then indicate how the four-center orbitals are de­

composed to the three-center orbitals. In these descriptions 

the wave functions are made up of a linear combination of the 

boron sp̂  tetrahedral orbitals and the hydrogen Is orbitals. 

Let us label the sp̂  hybrid bridge orbitals; on as X ̂  

and ̂ 2» on Bg as  ̂and "y. ̂  and the hydrogen is bridge 

orbitals as <p  ̂and (f>2) where the odd functions are above the 

plane defined by the borons and the external hydrogen atoms 

and the even ones below, Figure 1. Then we can easily derive 

the wave functions assuming no interaction between the ex-
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8| B2 

H2 
Figure 1. Bridge atomic orbitals for diborane 

X's are boron sp̂  hybrid orbitals 
1̂ s are hydrogen Is orbitals 
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ternal boron-hydrogen bonds and the bridge. Further, the 

molecule is assumed to have symmetry and the normalization 

constants are neglected for simplicity. These wave functions 

along with the irreducible representations to which they be­

long are listed in Table 1. 

Table 1. Molecular orbitals for diborane 

Molecular orbitals Irreducible Comments 
representation 

3T = X* A, Strongly bonding 
ô s framework orbital 

2 

?Ttt=:Xi- X?+Xo-%h. Bk Strongly bonding or-
11 1 * 5 * JU bital with a nodal 

+ A plane through plane 
>1" «2 defined by borons and 

external hydrogens 

*̂ H= B]_u Non-bonding 

"̂ I¥= 7̂ - X,- B2g Non-bonding 

"3̂ .= B̂ u Antibonding 

- V+A 

Alg Antibonding 

- ̂ 1" ̂2 

Now and are strongly bonding, Yin and ̂ "jV 

are non-bonding and and Y~yl are strongly antibonding. 

The bonding, non-bonding and antibonding levels are, no 

doubt, sufficiently well separated that energetically the 



www.manaraa.com

5 

four electrons (one from each boron and hydrogen atom) should 

be placed in the two bonding levels in accordance with the 

Pauli Principle. This closed shell situation leads directly 

to the diamagnetic character of diborane. 

The four-center orbitals can readily be decomposed into 

three center orbitals as follows, with the same assumptions 

and notation as before. 

Call Aj= $2 Bonding three-center orbital 

Bonding three-center orbital 

then belongs to ̂ g: identical to four-center 

bonding Â g orbital. 
- A2 belongs to B̂ uî identical to four-center 

bonding B̂ u orbital 

and Â = Non-bonding three-center orbital 

Â = Non-bonding three-center orbital 

then identical to four-center B̂ u non-bonding 

orbital 
identical to four-center B2g non-bonding 

orbital 

also <f>̂  antibonding three-center orbital 

Â ="%2"*"%l+""̂ 2 antibonding three-center orbital 
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then TP"y= Â - Â  identical to B̂ u antibonding four-center 

orbital 

ŷj= Açj+Â  identical to Alg antibonding four-center 

orbital 

The point at hand is that for qualitative discussions 

it makes no difference whether we discuss the bridge as a 

four-center four-electron problem or as two three-center 

orbitals. 

The structures of the higher boron hydrides (13, 14) have 

been determined by Lipscomb and his coworkers except for 

which was discovered by Barker, Lucht and Rasper (15)• 

Eberhardt, Lipscomb and Crawford (lib) have particularized 

the concepts outlined above to the higher boron hydrides de­

scribing the bonding in terms of these three-center bonds. 

Lipscomb (16) has applied the orbitals thus determined to 

the computation of dipole moments for some of the higher 

hydrides with mixed success. 

Electron Deficient Methyl Bridges 

At first glance the methyl bridge electron deficient 

compounds violate the "sacred" rule of organic chemistry that 

carbon can form only four electron pair bonds. However, as 

the discussion will later show this could be revised to say 

carbon uses four electron pairs in bonding but not necessarily 

to form electron pair bonds. 
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Tetramethylplatinum was the first methyl bridge electron 

deficient compound whose structure was surely known (17)• In 

this case the molecular geometry is that of a distorted cube 

(T̂  symmetry) where alternate corners are platinum and carbon 

atoms. Each platinum is bonded to three external methyl 

groups by normal Pt-C bonds and to three bridge carbons by 

electron deficient bonds. The platinum-platinum distance is 
O 

3.44A, much too long for platinum-platinum bonding (platinum 
v 

octahedral radius 1.30A). The most reasonable interpretation 
2 3 of the bridge bonding is in terms of the platinum d spJ 

octahedral hybrid orbitals directed along the cube edges and 

one sp̂  hybrid orbital from each carbon directed toward the 

center of the cube» 

By standard group theoretical methods (18) it can easily 

be shown that a linear combination of these carbon orbitals 

can belong to the irreducible representations : Â  (non-

degenerate) and T̂  (triply degenerate). The linear combina­

tion of platinum orbitals can belong to irreducible repre­

sentations ; A-p T-p E (doubly degenerate) and T2 (triply de­

generate). Therefore, the only combinations allowed under 

Tfl symmetry between the carbon orbitals and the platinum or­

bitals belong to Â  and T̂ . Since each platinum atom and 

each bridge carbon contribute one electron to the bridge the 

diamagnetic character of tetramethylplatinum can easily be 
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understood by placing two electrons in Â  and six electrons 

in T̂ ; both of which are bonding orbitals. 

Unfortunately, the carbon atoms could not be accurately 

located in this structure because of the low scattering of 

x-rays of carbon relative to platinum. Their position had 

to be inferred from the isomorphous compound, trimethyl-

platinum chloride (17)• 

No one correctly predicted the geometry of trimethyl-

aluminum dimer although attempts were made in this direction 

by a number of people. Pitzer and Gutowsky (19) knew it was 

a dimer, and from some infrared and Raman data they speculated 

that the relatively positive aluminum attracted the negative 

ct carbon atom and the bonding forces were essentially 

dipole-dipole interactions. Further he speculated that the 

higher homologs did not dimerize because the aluminum atoms 

were too far separated by the CHg groups from the << carbon at­

oms for dipole-dipole interaction to be effective. He seemed 

to be uninhibited by the fact that the C-H dipole in most com­

pounds seems to be in the other direction. Longuet-Higgins 

(20) speculated upon a trimer in spite of the vapor-density 

measurements. He also speculated in terms of a methylated 

double bond, but his conclusions were vague and his aluminum-
O 

aluminum distance of 1„9A was unreasonably short. 

The structure was determined by Lewis and Rundle (21) 

and from their results they laid a firm foundation for pre-
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dieting the methyl "bridge structures for the other light ele­

ments . The structure is as shown in Figure 2. The most sig­

nificant quantities to note are the short Al-Al distance of 

2.55A (covalent radius of Al 1.26A) and the sharp Al-C-Al 

angle of 70». 

Bundle describes the bonding in the trimethylaluminum 

dimer by asserting that the aluminum uses all its low energy 

sp̂  orbitals for bonding. Two of the aluminum atom sp̂  hybrid 

orbitals are used to form "normal" aluminum carbon bonds and 

the other two overlap with the sp̂  hybrid orbitals of the 

bridge carbons to form a four-center bridge bond. The sharp 

bridge angle is then a direct result of the tendency toward 

maximum overlap of the orbitals forming the bridge bond; this 

leads indirectly to the short aluminum-aluminum distance. A 

qualitative simple molecular orbital picture of this is as 

follows : assume the external aluminum-methyl bonds do not 

interact with the bridge bond and consider the bridge as a 

four center-four electron problem; further assume the molecu­

lar symmetry of (freely rotating methyl groups). Actually 

if the methyl groups were not freely rotating it would not 

alter the qualitative arguments to an appreciable extent. 

Let us label the bridge aluminum sp̂  orbitals on Al̂  as 

and and on Al2 as X ̂ and % ̂ and the sp̂  carbon bridge 

orbitals as  ̂̂ and 2̂. The odd functions are above the 
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( 

2.24 A 

2.55 A-j  
ilO 

124* 

f )  METHYL O ALUMINUM 

Figure 2. Molecular structure of trimethylaluminum 
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plane defined by the aluminum and the external carbon atoms ; 

the even ones are below (Figure 3). 

Then we can easily derive the molecular orbitals and 

their irreducible representations. They are listed in order 

of increasing energy in Table 2. 

Again with four electrons and two strongly bonding or­

bitals the diamagnetic situation is easily understood. 

The analogy that can be made between diborane and tri­

methylaluminum dimer is quite striking and shows clearly that 

the boron hydrides are by no stretch of the imagination unique, 

Table 2. Molecular orbitals for trimethylaluminum dimer 

Molecular orbitals Irreducible Comments 
representation 

+ X>+£-*+}£v A, Strongly bonding 
J s framework orbital 

T̂T= Bk Strongly bonding 
11 l  ̂ 3 H- jU orbital with a 

+ fn- f« nodal plane through 
the A1 and external 
C atoms 

*2~ ̂3" ̂-14. Blu Non-bonding 

2̂" ̂ 3+*4 B2g Non-bonding 

*1~ *2+ *4 B3u Antibonding 

-"?!+ *2 

Â g Antibonding 

- f $ n 
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Al Al 

Figure 3. Bridge atomic orbitals for trimethylaluminum dimer 

X's are aluminum sp̂  hybrid orbitals 

5* «s are carbon sp̂  hybrid orbitals 
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The structure of the dimethylberyllium polymer was not 

correctly predicted by Pitzer and Gutowsky (19). All they 

could say was that the more electropositive element Be would 

more strongly attract the negative methyl. The structure was 

determined by Snow and Bundle (22) and the bonding can be 

readily understood in terms of the beryllium atoms making use 

of their sp̂  hybrid orbitals to overlap with bridge carbon sp̂  

hybrid orbitals. The discussion applied above to dimeric tri­

methylaluminum can be applied here but one would then have to 

consider each bridge localized. The M-C-M angle here is even 

sharper than in trimethylaluminum dimer, 66°, as compared to 

70° and the Be-Be distance is 2.09A (Be covalent radius 1.06A). 

All Be-C distances in this structure were found to be equal as 

would be expected on the basis of Bundle's (2) principles. 

Now it is quite clear from the above principles and 

examples that if the metal atom becomes appreciably larger 

metal-metal repulsions will decrease the overlap between the 

metal orbitals and the bridge carbon sp̂  hybrid. Thus, with 

larger metal atoms the system has two choices: (1) to exist 

only as the monomer (2) to find another geometry and conse­

quently a different type of electron deficient bonding. 

Trimethylgallium (23) appears to be associated to a dimer 

but a somewhat weaker dimer than trimethylaluminum. This is 

not surprising since the covalent radius of Ga is experimen­

tally the same as AL (1.26A) (24) and the metal-metal repul-
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sions in trimethylgallium probably are not very different 

from that in trimethylaluminum. However, the covalent radius 

of In is 1.44A and indeed freezing point depression data (25) 

indicate a tetramerie structure for trimethylindium in 

benzene. The melting point of trimethylindium is also anom-

olously high (88°) compared to trimethylaluminum (15°). The 

vapor, in contrast, is only a plane trigonal monomer as deter­

mined by Pauling and Laubengayer (26). The object of part 

of this research was to determine the molecular geometry of 

trimethylindium in the solid phase and from this to infer 

the type of bonding. 

Halogen Bridges 

Halogen bridges occur quite frequently with the same 

metals as do methyl bridges. The geometry of halogen bridges 

and methyl bridges is quite similar but sufficiently different 

in certain respects to be indicative of different electronic 

structure. 

The structures of AlgCl̂ , Al̂ Br̂ Al̂ Î  in the vapor 

phase have been found by Palmer and Elliot (27) by electron 

diffraction. The geometry of these molecules is strikingly 

similar to trimethylaluminum dimer except for two critical 

points. The metal-metal distance in dimeric aluminumtrichlor-

ide is much larger 3.64A and the A1/C1'<A1 angle is much larger, 

92°, Figure 4. One can describe these structures as the 
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AlgCte DIMER 

•3.41 A6 

Figure b, Structure of dimeric aluminum trichloride 
(vapor phase) 
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classical chemist has done for many years by discussing the 

bonding in terms of coordinate covalent links with resonance 

between the two forms. 

c ' <  
ci K C i ^  ̂c ' c / ci c 1 

However, it is illuminating to discuss these in the same 

language as has been done for the trimethylaluminum dimer. 

In this way the difference between methyl electron deficient 

bridges and halogen bridges will become quite clear. 

As in trimethylaluminum let us assume the Al-Cl bonds 

external to the bridge do not interact with the bridge bond 

and discuss the problem as an eight-electron four-center prob­

lem. The experimental A1-C1-A1 angle strongly implies pure 

p-bonding. Therefore, let us make molecular orbitals from 

the bridge sp̂  hybrid orbitals of aluminum denoted by 

1^2, ̂ 3» ̂  if and the p orbitals of each bridge chlorine de­

noted by 3̂' Figure Only two of the three 

p orbitals of each chlorine need to be considered since the 

other p orbitals belong to an irreducible representation in­

dependent of all the other bridge atomic orbitals (non-

bonding orbital). If we now assume molecular symmetry 

and neglect the normalization constants the wave functions 

listed in Table 3 can be easily derived. They are listed in 

order of increasing energy, but it is difficult to decide 
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Cl 

Al 

Ci 

Figure 5» Bridge atomic orbitals for dimeric aluminum 
trichloride 

X's are aluminum sp̂  hybrid orbitals 
w's are chlorine pure p orbitals 

(other lobes of chlorine p orbitals not shown 
for simplicity) 
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Table 3. Molecular orbitals for AlgCl̂  

Molecular orbitals Irreducible Comments 
representation 

n$r-r= A, Strongly bonding 
g framework orbital 

%T= *X-,- "Xo+"Xo-Xi. Ba„ Strongly bonding or-
11 J-  ̂ d  ̂ ju bital with nodal 
+ LV _ lu +uv -uA plane through A1 and 
+ X w2+ 3 4 external CI atoms 

'5jTT= %n+X0- Xj-'X* B, Strongly bonding or-
±±± 1 4 j + lu bital with nodal 

+ W uy_-u/, plane perpendicular 
to plane through A1 
and external CI 
atoms 

îv~ ̂ 1"̂ 2~ ̂3+̂ "4 B2g Strongly bonding 

+tVl"*V2'"(V3*(V4 

TZy= "̂3+̂ "4 B2g Antibonding 

-

1f̂ X= Xx+̂ 2"̂ 3"̂ 4 Blu Antibonding 

- tv2+ 

T71j= % 1-̂ 2"̂  ̂3" ̂4 B3u Antibonding 

/fVIH= î+̂ 2+̂ 3+̂ 4 Alg Antibonding 

-Wl-u/2-u 
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the order of Bgu, B̂ uj B2g states on a qualitative basis and 

they may well be interchanged. 

We now have eight electrons to put into four bonding or­

bitals and again a closed shell electronic structure results. 

The Bju and B2g were non-bonding for trimethylaluminum since 

the sp̂  carbon orbitals could not belong to this representa­

tion. 

From this description it is quite clear that there is 

nothing unique about electron deficient compounds. The only 

difference in a molecular orbital sense between trimethyl­

aluminum and AlgCl̂  is in the atomic orbitals used to make 

up the bridge bond. It is interesting to note that this 

description of AlgCl̂  corresponds to one electron pair bond 

between each A1 and CI. The bonding in AlgCl̂  could have 

been equally well described in terms of two-center orbitals 

but not three-center orbitals, a characteristic of electron 

pair bonds• 

A comparison similar to the one made above between di-

meric trimethylaluminum and dimeric aluminumtrichloride can 

be made between polymeric dimethylberyllium and polymeric 

berylliumdichloride. The structure of berylliumdichloride 

was found by means of x-ray diffraction by Lewis and Bundle 

(28). The Be-Cl-Be angle was found to be 81° as compared to 

66° for the Be-C-Be angle in dimethylberyllium. Again it 

seems reasonable, as in AlgCl̂ , that the halogen uses nearly 
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pure p-orMtals for bridge bonding. The discussion of AlgCl̂  

can then be readily extended to this case. 

The structures of the dimeric gold trihalides (29), the 

dimeric dialkyl gold halides (30), the infinite chain pal-

ladous dichloride can all be understood in the very same 

language âs dimeric aluminumtrichloride. In the gold and 

palladium compounds, however, the metal orbitals used in the 
2 bridge are the familiar d sp hybrid orbitals. 

The structure of trimethylplatinum chloride is also un­

derstandable in this same sense except now chlorine makes use 

of all three of its p orbitals in forming bonds with the 

d2 sp̂  orbitals of platinum rather than only two as in dimeric 

aluminumtrichloride. 

There seems to be a great deal of difference, however, 

between the vapor structure of some halides and their solid 

structure. As mentioned before, aluminum trichloride, alu­

minum tribromide and aluminum triiodide are dimers in the 

vapor phase, but aluminum trichloride (31) in the solid phase 

is that of a distorted CrCl̂  structure (32), i.e. the aluminum 

has a coordination number of six. It is a typical ionic layer 

lattice structure in spite of the fact that Raman data (33) 

indicated it was dimeric in the solid. Aluminum tribromide 

on the other hand retains the dimer molecule into the solid 

phase (3̂ ); unfortunately, the structure has not been suf­
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ficiently well determined in the solid to compare distances 

and angles with the electron diffraction work on the vapor. 

The Raman data (33) are also consistent with a dimer in the 

solid for this compound. Barnes and Segel (35) have studied 

the electric nuclear quadrupole resonance of solid aluminum 
7<y gn 

tribromide and have identified the Br'7 and Br nuclear 

quadrupole resonance frequencies, and their interpretation 

of the observed frequencies is consistent with a dimeric 

molecule in the solid. 

The crystal structure of aluminum triiodide is unknown 

but Barnes and Segel found a close correspondence between the 

resonance spectrum of AlBr̂  and Allg (35, 36). Specifically, 

in AlBr̂  and All̂  the spectrum consists of three resonances 

for each isotope, two lines lying close together and differ­

ing by 1 per cent of the resonance frequency and the third 

about 15-20 per cent of the resonance frequency below the 

other two. The first two lines are attributed to crystal-

lographically distinct halogen atoms, the halogens external 

to the bridge, and the lowest line is attributed to the bridge 

halogen. If All̂  is a dimer in the solid its melting 

point relative to AlCl̂  and AlBr̂  seems rather strange (AlCl̂  

M.P. 193* at 2.5 atm; AlBr̂  M.P. 97*; Allg M.P. 191°) (37). 

For the trichlorides and tribromides of gallium and 

indium (38) the metal-metal distance is large enough for them 

to exist as dimers (as indicated by electron diffraction) in 
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the vapor in contrast to trimethylindium. This large indium-

indium distance as compared to the necessary metal-metal 

distance for trimethylindium to exist as a dimer is probably 

due to two factors, a larger M-X than M-C distance and a 

broader M-X-M angle than M-C-M angle. It is somewhat peculiar 

that the electron diffraction data, poor as it may be, in­

dicates that Gal̂  is a plane trigonal monomer but Inl̂  is a 

dimer (38)* This may be due to inaccuracies in the admitted­

ly poor data. The poor data did not permit the determination 

of the conformation of these dimers. It seems reasonable to 

assume a molecule of symmetry as in AlgCl̂ , and therefore 

one might expect the bonding also to be very similar. 

The crystal structure of InCl̂  has been found by Temple-

ton (39) and it is essentially an ionic layer structure very 

similar to solid AlCl̂ . Some preliminary photographs taken 

in this laboratory indicate that InBr̂  may also have an ionic 

layer lattice. The crystal structures of GaClg, GaBr̂ , Gal̂  

and Inlg are unknown. Barnes (36, 4l) and his coworkers have 

studied the nuclear quadrupole resonance of GaCl̂ , GaBr̂ , 

Gal̂ , InBr̂  and Inl̂  in the solid state, and the same basic 

pattern as indicated above for AlBr̂  occurs for each isotope. 

From this he concludes that these compounds are all dimers 

in the solid. Greenwood and Worrall (42) have studied the 

electrical conductivity of the solid and liquid of GaCl̂ , 

GaBr̂  and Galg and conclude from a decrease of the electrical 
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conductivity in going from the solid to the liquid that the 

solid must be essentially ionic and the liquid contains the 

nonconducting dimeric molecules. 

An interesting phenomenon was observed by Barnes. At 

liquid nitrogen temperatures in Inl̂  the metal and the bridge 

halogen resonance disappears, but in Gal̂  only the metal 

resonance disappears. This is indicative of some sort of 

phase transition, the exact nature of which is not clear. 

Other physical properties of these IIIB halides are quite 

interesting: GaCl̂  M.P. 77.9°, B.P. 201°, GaBr̂  M.P. 121e, 

B.P. 280®. These are quite consistent with dimeric molecules 

in the solid. But on the other hand: InCl̂  M.P. 586®, sub­

limes ; InBr̂  M.P. 436°, sublimes; Inl̂  M.P. 210°, Gal̂  M.P. 

212°: these do not seem very consistent with molecular 

solids. 

It is interesting also to note that Allg, Gail̂  and Inl̂  

all melt within 20° of one another. It seems as though it 

makes little difference which metal combines with the iodine. 

Since the above discrepancies were found to exist a 

complete x-ray structure determination was undertaken on 

Gal̂  to resolve some of the above uncertainties. Both the 

nuclear quadrupole resonance and the conductivity measurements 

could only infer the structure on the basis of other known 

structures, and the necessary extrapolations may well have 

been unwarranted. 
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STRUCTURE OF TETMETH3TLIMDITJM 

Preparation and Properties of Trimethylindium 

Trimethylindium was prepared "by the method of Dennis, 

Work, Rochow and Chamot (25) by Dr. B. Zaslow and given to 

us in sealed tubes. This method of preparation consists of 

refluxing dimethylmercury with excess metallic indium for 

several days. The trimethylindium thus formed was then 

sublimed from the residue of metallic mercury and indum. 

The pure compound (25) is a colorless solid, melting at 

89*5*0, strongly birefringent and possibly existing in two 

crystalline modifications of which one is dominant. It is 

very reactive to water, oxygen and air. It is soluble in 

acetone, benzene, ether and carbon tetrachloride. The density 

as determined by pycnometric methods is 1.568g/c.c. Freezing 

point depression measurements of benzene solutions indicate 

a molecular weight of four monomer!c units. In contrast to 

the analogous aluminum compound the etherate of trimethylindi­

um is very unstable (44), but it forms a surprisingly stable 

(M.P. 66 °C) trimethylamine adduct. 

For single crystal x-ray structural determination tri­

methylindium was sublimed into capillaries on a vacuum line. 

Single crystals were grown by heating the capillaries in a. 

water bath and allowing the bath to cool slowly. Single 

crystal x-ray photographs indicated the existence of a tetrag­
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onal and a less stable, pseudo-hexagonal form of trimethyl­

indium. The pseudo-hexagonal form was by far the least 

abundant of the two forms and was not investigated in this 

research. However, both forms were quite unstable in the 

x-ray beam and numerous crystals had to be examined in order 

to obtain the data necessary for a thorough structural in­

vestigation. 

X-Ray Data 

Crystals were found to grow in the capillary with the 

(001) direction, the fllO} direction or the fOlO) direction 

parallel to the capillary axis. From crystals with the fllO) 

direction parallel to the capillary axis hkO and bh£ inten­

sity data were taken by means of timed exposures of 2, 5, 10, 

15, 30 minutes and 1, 2, 4, 8, 16 hour duration. From crys­

tals with the fOlO} direction parallel to the capillary axis 

ok£ precession data were taken by timed exposures as for the 

hkO and hh£ data. From crystals with the fOOlJ direction 

parallel to the capillary axis Weissenberg equi-inclination 

photographs of reciprocal levels hkO, hki ...hk6 were ob­

tained by a combination of multiple-film and timed exposure 

technique so that the intensity of a reflection could be 

estimated on more than one film. The precession data were 

corrected for Lorentz and polarization factors by means of 

a chart due to Waser (45). The Weissenberg data were cor-
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rected for Lorentz and polarization factors by means of a 

table computed on the I.B.M. 604 from the function given by 

Cochran (46). Higher layer Weissenberg data were corrected 

for spot extension from a chart published by Phillips (4?)• 

All intensity data were estimated visually. Laue photographs 

were also taken of the hkO and hh,/zones. 

Unit Cell and Space Group 

Trimethylindium was found to be tetragonal with lattice 

constants (as determined by back reflection methods (48)), 

a = b = 13.24 + .01 A 

c = 6.44 + .01 A 

with eight molecules per unit cell, {* cale= 1.88 g/c.c., 

/°obs = 1*568 g/c.c. The Laue class was observed to be 

4/m-Ĉ k with the following systematic extinctions: for hkO 

data; reflections absent for h + k = 2n + 1: for 00 Jdata; 

reflections absent for Jl - 2n + 1. This uniquely determined 

the space group to be P4g/n (49). 

Determination of Atomic Positions 

From the above lattice constants and the experimental 

density 6.7 formula units per unit cell were calculated. 

However, this leads one to suspect the experimental density 

is in error, and eight molecules per unit cell were assumed 
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in the analysis. These could be placed in the eight-fold set 

of general positions, 

± [x,y,z; i - x, i - y, z; i - y, x, i - z; y, £-x,jr-z~] . 

A Patterson projection onto the (001) plane was calcu­

lated using the Patterson function, 

P(xyo) = jT  ̂ĵ F2CEkO)+ F2(hkO)] Cos 2 7h x Cos 2fky 
h=l k=l 

+ F2(h00) Cos 27Thx + £. £ [~F2(hkO)- F2(hkO)J Sin 2 77h 
h=l h=l k=l 

N 

x Sin 277*ky + 2" F2(0k0) Cos 2Fky 
k=l 

where F2CBk0) = F2(kh0). 

The Patterson vector map is shown in Figure 6. With the or­

igin of P4g/n at 1 the Patterson vectors can easily be derived 

and are shown in Table 4. The Patterson map can be inter­

preted with these vectors, assuming eight indium atoms per 

unit cell, to give the indium parameters x = .214, y = 0. 

No attempt was made to interpret indium-carbon vectors. 

The conventional heavy heavy atom technique was then 

employed to find the carbcn atom parameters, i.e., structure 

factors (with James-Brindley scattering factors (50) ) were 

calculated on the basis of the heavy atom positions and the 
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Table 4. hkO Patterson vectors 

Multiplicity Vector Peak at 

2 

2 

2 

(£- x -y, -y+ x) 

(£+ x- y, y* x) 

(2x, 2y) 

(i+ 2y, i- 2x) 

(-2x, -2y) 

26/60,0 

30/60, 4/60 

(34/60, 0) 

(17/60, 13/60) 

(43/60, 13/60) 

and thus x = 13/60, y - O 

signs thus determined were used as the signs of the Fourier 

amplitudes in the electron density analysis. An electron 

density projection onto the (001) plane was then computed 

using the function, 

N 
x Sin 27Tky *• £ F(OkO) Cos 27Tky. 

k=l 

This projection seemed to be well resolved except for what 

appeared to be some anisotropic thermal motion of the heavy 

metal atom. Peak centers were located by Booth's (51) method 

and the results were as follows $ 

p (xyO)= jr 21 [F(BkO) + F(hkO)] Cos 2îrh x Cos 2 7hky 

K N N r , 
£ F(hOO) Cos 2rhx + % F(EkO)- F(hkO)J Sin 2 77* h 
h=l h=l k=l 
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Atom Parameters 
x y 

In .214 .003 

C1 .141 .129 

c2 .075 .029 

C3 .333 .933 

Structure factors were then calculated including all 

atoms [carbon atom scattering factors (52)J and a semilog 

plot of log FC/FC VS. sin2©/̂  2 was made. The slope of this 

graph gave the isotropic temperature factor of 4.92 and the 

intercept (sin20/̂  2 = 0) gave the scale factor 8.71- With 

these quantities an R value 

r ïlhk- l'A 

£ 1 *  o l i  

of .151 was obtained, usually considered good agreement for 

an early stage of structure determination. 

It was decided to refine this projection by a difference 

synthesis (53)» i.e., by computing a difference electron 

density projection where instead of F̂ (hkX)), values of 

[*FQ(hkO)- Fc(hkO)J are used as Fourier coefficients, where 

Fq is a calculated structure factor based on spherical atoms 

corrected for thermal motion and FQ is the observed structure 

factor placed on the same scale as FQ. This type of Fourier 

analysis leads to characteristic map features that enable 

one: a) to decide on the direction an atom must be moved to­
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ward the correct position, b) to observe directly anisotropic 

thermal motion and c) to make backshift corrections without 

additional computation. A difference electron density pro­

jection onto the (001) plane was computed with the above 

mentioned parameters, temperature factor and scale factor and 

is shown in Figure 7« Some rather surprising features were 

noted: (1) there is a relatively deep hole where the C2 atom 

was placed, (2) there is a large positive region near the 

metal atom position and (3) the metal atom shows none of the 

features expected for anisotropic thermal motion. Attempts 

to improve the situation by shifting atoms proved futile. 

It was then decided that the C2 atom had been placed at a 

false maximum and that it belonged very close to the metal 

atom in this projection. At this stage the original intensity 

data were carefully reexamined and a few small errors were 

found, errors that in most crystal structure determinations 

would make little difference. 

The ordinary electron density projection onto the (001) 

plane was then recomputed (Figure 8) and the false maximum, 

indeed, disappeared. Therefore, C2 had been incorrectly 

placed. A partial difference electron density projection was 

then computed by subtracting out only the metal atom contribu­

tion to the scattering. The electron density onto the (001) 

plane thus computed is shown in Figure 9* The C2 atom was 

clearly resolved in this projection. Thus a preliminary set of x 
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Figure 7» Difference electron density projection onto the (001) plane 

* Input position for metal atom 
O Input position for C2 atom 

Dotted lines negative contours 
Solid lines positive contours 
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Figure 8. Electron density projection onto the (001) plane 
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(only the metal atom contribution to the scattering has been 
difference electron 

subtracted out) 

X Input position of metal atom 
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and y parameters were obtained for all atoms, and they were 

as follows : 

atom parameters 
x y 

In .214 .003 

C1 .143 .122 

c2 .185 .916 

C3 .319 .933 

For these parameters B = .122. 

By trial and error it was found that the metal-atom z 

parameter was approximately .411. Heavy atom techniques were 

then applied to the electron density projection onto the (110) 

plane in order to resolve the carbon atoms. However, this 

projection was poorly resolved due to overlapping of peaks, 

and all that could be ascertained from this projection was 

that the metal atom parameter of 0.411 was correct. 

With the Ok£ precession data an electron density pro­

jection onto the (100) plane was computed by heavy atom tech­

niques . A slight asymmetry of the metal atoms in the y direc­

tion was noted indicating a change of origin was necessary 

to be consistent with the parameters from the electron density 

projection onto the (001) plane. The origin was shifted to 

3/4, 1/4, 1/4 from 4 of P42/n as given in the International 

Tables (49). The new representation of the space group and 

the general set of positions are summarized in Table 5- With 

this new origin an electron density projection onto the (100) 



www.manaraa.com

36 

Table 5* Space group representation, general positions and 
structure factor relations 

<l> 

P̂ g/n 

Origin 3A, lA, IT1? 
from Ç of International 

Tables 

General 8-fold set of positions : 

± (x,y,z; i- y,x,-§+ z;i- x, £- y, z; y, £- x, i+ z) 

F(hlç̂ ) = 2f̂  [Cos 2#*(hx+ky+/z) + Cos 2 ̂  (hy+kx+ 

+ Cos 2 (5x+ ky+ 2* z+ h+ k/2 ) 

+ Cos 2 (hy+ kx+ £ z+ k+ 

b+ k = 2n k+ ̂  = 2n 

F(hk̂ ) = FOik #) = F(hkT) ̂  F(Bki) 

F(fckl) = F(hEi) 

F(hh/) = FChhJ) 

h+ k = 2n k+ ̂  = 2n+ 1 

F(hki) = F(hkF) = F(hk̂ ) ̂ F(W) 
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Table 5• CContinued) 

F(Bk,f ) = F(hki) 

FChhJb = - F(hhi) 

h + k = 2n + 1 

k + Jl = 2n 

h + ̂  = 2n + 1 i = B! = 0 if ̂  = 0 

F(hk/ ) = F Chile £ ) = -F(hk t) / F (Be/) 

FCBk / ) = -F(bS () 

h + k = 2n + 1 

k + £ - 2n +1 

h +̂ = 2n 

A = B = 0 if ̂  = 0 

F(hk/) = F(H5 f ) = -F(hk t) £ F(hkJ) 

F (Iik/) = -FChEi) 

plane was computed via the heavy atom technique and is shown 

in Figure 10. The peak centers were located by Booth's method, 

where possible. The projection was not well resolved and very 

small changes in intensity considerably altered carbon peak 

positions. Symmetry arguments decided the correct molecular 

geometry including the carbon atoms, but for discussing bond 
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Figure 10. Electron density projection onto the (100) plane 
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angles and bond lengths this was clearly inadequate. Summary 

of the two dimensional results is in Table 6. 

After considerable difficulty with decomposing crystals 

a crystal sufficiently stable for complete three-dimensional 

intensity data was obtained. Structure factors were calcu­

lated on the I.B.M. 604 for all the observed reflections and 
F 2 2 a semilog plot of log c/FQ vs. sin 9/̂  for each reciprocal 

level, hk0...hk6, was made in order to put all levels on a 

common scale. 

Table 6. Summary of two-dimensional results 

Closest In-In distance 5*22A 

Distance between In atoms related by the real 0 
2-fold of the 4-fold inversion axis 6.76A 

Z separation of the two real two-folds of the e 
4-fold inversion axis 2.11A 

Distance between closest In atoms not in e 
tetramer 5«6?A 

In-Cg (short bridge bond) distance 2.37A 

In-Cg (long bridge bond) distance 2.97A 

In-Ĉ -In (bridge angle) 158° 

In-Ĉ  (Ĉ  of next te tramer) 3-52 A 

In-Ĉ  Bond length 2.17& 

In-Cg Bond length 2.29A 
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The electron density function, 

- - N 
r /> a 1 

/°(xyz) = 2Z 27 F(hk̂ )[cos 2 f̂ hx4ky+/z ) jCos 2/r(Ex-«5y+fz)j 
h=l k=l i=l 

+ F(EkJ)£cos 2ir(Sx+ ky+jfz) + Cos 2̂ (hx+ ky+ £ z)J 

where the positive sign is used when h + k = 2n and the nega­

tive sign when h + k = 2n +1, was used to compute three di­

mensional electron density blocks. The blocks consist of a 

4x4x4 grid, where the grid spacing is 1/80 of the unit 

cell. The program on the I.B.M. 650 is such that the function 

is calculated for each of the 64 points in the block in one 

computation. Carbon atom positions were determined by com­

puting one or more of these blocks beginning with the two-

dimensional carbon atom parameters. One example of an elec­

tron density map computed by this means is shown in Figure 11. 

Carbon atom peak centers were estimated from these blocks 

and gave the following parameters : 

parameters 
atom X 7 z 

CI .143 .122 •233 

°2 .185 .946 .742 

C, .340 •931 .198 
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Figure 11. Electron density sections for atom 
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Refinement of Structure 

The structure was refined by a least-squares method in 

which individual (but isotropic) atomic temperature factors, 

scale factors for each reciprocal level, as well as the posi­

tional parameters of the atoms are treated as variables. 

The program was written by Drs. Templeton and Senco for only 

orthorhombic symmetry but it was modified to treat monoclinic 

cases. Trimethylindium was reduced to monoclinic symmetry 

by doubling the positional parameters and including in the 

calculation those reflections which are independent by tetrag­

onal symmetry but non-independent by monoclinic symmetry. 

The function minimized by the program is E = -F I2 
i ' o c' i 

where is a weighting factor. The variation of Wwith F is 

shown in Figure 12. 

Final results after four refinement cycles are shown in 

Table 7« The refinement was considered complete when para­

meters , temperature factors and the usual R factor ceased to 

change appreciably from one cycle to the next. 

Interatomic distances were computed on the I.B.M. 650 

with a program due to Templeton. Angles were computed manu­

ally. Standard deviations of bond lengths were computed by 

a formula due to Cruickshank (54). Interatomic distances 

and their accuracy are given in Table 8. 

Final structure factors are tabulated in Table 9« 
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Figure 12. Variation of square root of weighting factor 
with observed structure factor. This weight­
ing factor used in Templeton and Senco's 
least squares program 
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Table 7. Final parameters, standard deviations and atom 
temperature factors 

Atom X y z fx *z BA * 

In .2140 .0038 .4124 .0002 .0002 .0005 10.3 

ci .1420 .1282 .2684 .0027 .0027 .0070 9*29 

C2 .1710 .9620 .7086 .0028 .0027 .0067 8.94 

°3 *3422 .9282 .2785 .0028 .0028 .0071 9-37 

Rn = 

R, = 

|Poli - lF=l i I 
_ i 

o i 

- Fc' ± 

fPoll2 

= 11.i 

= 8.57# 

Scale factors 
K0 = 3.53 

Kx = 3-37 
Eg = 3-88 

K3 = 3.99 
\ = 4.33 

K5 = 4.57 
k6 = 5.05 

Table 8. Bond distances and angles 

In̂ -Cg 2.15 + .04Â Short bridge bond within tetramer 

Ing-Cg 3.11 + •04a Long bridge bond within tetramer 
O 

n̂l"̂ l 2.12 + .04A Short bridge bond to another tetramer 

In-Cg 2.06 + .04A Unbridged In-C distance 
O 

In̂ -Ĝ  3-59 + .04A Long bridge bond to another tetramer 

In̂ -In̂  5*235+ .004A Closest In-In distance within tetramer 
O 

In,-In, 5*665+ .004A Closest In-In distance between 
J tetramers 

In̂ -In̂  6.79 + .004A Distance across tetramer 
O 

Cg-C, 3*78 + .05A Bridge methyl contact distances within 
 ̂ tetramer 



www.manaraa.com

45 

Table 8. (Continued) 

In-C-In Bridge angle within tetramer is linear 
within experimental error 

Ĉ -In-Ĉ  angle = 122° 

Cg-In-Ĉ  angle = 117® "Monomer" 

Ĉ -In-Cg angle = 119* 

Table 9» Final structure factors for trimethylindium 

Structure factors positive unless designated 
i pi 

Fc = c/8 otherwise 

Indices KFC FcVb'S2 Indices SFo 
to 

F 'e"B S 
c -

(hOO) 
4 46.6 49.5 5 46.6 -48.6 
6 22.3 27.4 9 24.5 26.1 
8 13.5 15.0 13 8.1 7.3 
10 18.3 19.8 15 4.1 4.0 
14 11.7 12.2 
18 4.3 3-9 (h40) 

49.5 
4.3 3-9 

0 46.6 49.5 
(hlO) 2 14.3 -17.8 
3 32.7 -36.3 4 40.2 41.8 
5 20.3 25-3 6 6.8 7.9 
7 2 7.7 -31.5 8 6.9 4.9 
9 6.4 5.7 10 11.7 13.9 
11 13.0 -12.5 14 6.9 6.1 

(h20) (h50) 
2 81.9 -82.2 1 17.1 -19.5 
4 6.4 - 7.2 3 46.6 -47.4 
6 24.5 -26.4 5 11.2 -11.6 
8 17-4 -23*9 7 32.8 -40.3 
10 3.1 — 3.6 11 15.5 -15.9 
12 13.3 -13.3 13 5-4 - 3.7 
16 6.6 - 5.7 15 4.4 - 3.3 - 5.7 

17 3.8 - 3.4 
(h30) 

37.4 37.5 1 37.4 37.5 
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Table 9- (Continued) 

r  2  . . . . . . .  r  ,  
Indices KFQ Fc*e'B-S Indices KFQ Fc'e~BS 

mou; 
0 22.3 27.4 9 9.1 8.8 
2 22.4 -25.9 13 2.7 2.1 
4 9.5 12.1 
6 9.9 — 9.8 (h.12.0) 
10 4.8 4.6 2 16.8 —16.6 
12 6.1 — 6.1 6 11.0 —10.8 
14 5.9 5.3 8 6.2 - 5.3 5.3 

10 4.2 — 2.8 
(h?0) 12 6.2 - 5.0 
1 25.7 31.1 

(h-13-0) 3 12.7 12.1 (h-13-0) 
5 29.9 34.2 3 4.0 — 1.0 
7 3.1 1.9 7 5.7 — 6.0 
9 17.2 19.9 

(h-l4«0) 13 8.3 7.9 (h-l4«0) 13 
0 il.7 12.2 

(h80) 4 11.0 9.1 
0 13.5 15.0 8 4.5 4.1 
2 18.9 =22.1 10 4.1 3.2 
4 7.1 4.6 14 4.6 2.5 
6 11.9 -12.6 
8 5.7 — 3.6 (h.15*0) 

— 4*3 12 7.9 — 0.2 7 6.0 — 4*3 
16 2.8 — 2.9 — 2.9 

(h-16-0) 
(h90) 2 7.6 - 6.8 
1 14.2 -15.5 6 3.6 — 3*4 
3 19.3 -22.0 

(h.17-0) 7 16.0 -I7.3 (h.17-0) 
11 9.1 -10.0 5 2.8 2.9 

(h'10.0) (h-l8«0) 
0 18.3 19.8 0 4.3 3.9 
2 3.8 - 3.2 

(0-18-0) 4 15.6 19.1 (0-18-0) 
6 5.0 3.5 
8 6.4 7.5 (hOl) 

15.7 10 9.3 7.8 3 18.3 15.7 
14 5.6 4.9 4 10.9 12.5 5.6 4.9 

6 27.2 26.7 
(h«ll°0) 8 18.7 20.8 
1 5.1 4.4 9 7.5 6.7 
5 10.7 10.6 10 4.9 4.0 
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Table 9. (Continued) 

Ve-*'*2 
t 2 

Indices EF0 F^e""®"-® Indices KFQ 

12 13.6 14.1 6 16.7 15.9 
13 5.2 5.5 7 11.6 11.4 
16 5.5 5.5 8 8.4 9.2 
18 4.2 0.4 9 10.8 11.6 

12 8.1 8.4 
(h'l*l) 13 5.9 6.1 
0 19.7 23.1 
1 17.2 17.6 (h5l) 
3 11.8 11.9 1 27.0 -28.8 
4 17.7 20.5 4 13.8 13.9 
5 27.4 -31.8 5 29.9 -36.2 
7 12.2 12.2 6 6.6 - 7.1 
8 21.3 20.8 8 9.0 10.3 
9 17.6 -18.6 9 22.3 -20.9 
12 6.0 7.4 10 4.5 - 4.4 
13 3.5 - 4.5 13 7.0 - 6.7 
14 4.5 4.1 

(h6l) 
(h21) 0 27.2 -26.7 
0 56.6 70.4 1 23.2 24.8 
3 23.6 18.7 2 15.6 17.3 
4 42.4 -42.6 4 14.8 -16.0 
5 14.5 -15.8 5 17.4 -20.4 
6 10.7 -14.4 11 6.7 - 8.4 
7 11.6 -12.8 12 4.8 5.2 
8 11.8 - 9.7 
10 14.6 -15.3 (h71) 
11 8.0 - 7-9 1 17.4 17.9 
14 8.4 - 8.2 2 7.8 - 9.0 
15 5.9 - 4.2 3 25.4 28.1 

4 7.5 7.3 
(h31) 5 4.5 3.3 
0 18.3 -15.7 6 6.3 - 6.4 
3 33.3 37.4 7 23.2 23.3 
6 19.6 -21.7 8 6.9 6.8 
7 28.6 31.9 11 10.9 10.9 
10 8.5 - 9.5 13 3.8 2.4 
11 13-6 12.7 

(h8l) 
(h4l) 0 18.7 -20.8 
0 10.9 -12.5 2 11.1 10.5 
1 6.2 - 7.2 3 19.3 19.9 
2 41.1 42.4 4 13.8 -15.5 
3 26.2 29.5 7 5.0 4.6 
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Table 9• (Continued) 

Indices W Ibices KP0 

2 17.3 —14.6 
3 37.6 —36.2 
4 6.1 7.2 
5 — 6.1 
7 14.3 -13.7 

(h22) 
2 28*6 -22.7 
3 38.1 -36.8 
4 3.8 - 2.8 
6 14.G -13.4 
7 12.0 -11.6 
8 5«6 - 4.4 
9 14.0 -14.3 (h?2) 
12 6.9 - 7-1 0 3*5 3.5 
13 8.8 — 9.6 1 3 *9 6.0 

2 5.7 5.2 
(h32)  ̂ 9.5 -10.1 
0 31.4 -19.5 5 13.5 13.0 
2 10.5 - 9.9 6 14.8 13.6 
4 33.9 -32.5 8 6.6 - 7.6 
5 15.0 16.3 9 7.5 8.8 
6 5.6 6.3 10 7.4 7.9 
7 6.2 - 5.2 
8 22.1 -23.4 (h82) 
9 10.8 11.0 0 7.8 6.1 
12 6.8 - 7.2 1 32.0 31.4 

2 9.6 -11.7 
Ch42 ) 4 5.5 4.8 
o 35.5 28.9 5 5.8 18.3 
4 15.5 10.2 7 7.7 6.4 
5 29.3 29.0 9 5.9 3.9 
7 13.2 12.8 11 8.5 8.1 
9 6.3 5.1 
11 13.2 13.2 (h92) 

1 6.6 - 5.1 
(h52) 2 5.1 - 2.3 
0 13.5 12.6 3 8.7 - 6.8 
1 13.3 -14.2 4 13.9 -13.6 
2 17.1 16.0 7 9.3 - 9.1 
3 13.6 -13.6 8 11.8 -11.3 
4 6.8 - 6.8 12 5.1 - 4.7 
5 4.2 5.7 
7 13.8 -13.9 (h"10.2) 
8 7.2 - 9.8 0 10.8 11.5 

10 7.8 9.0 3 16*2 -16.7 
11 6.9 - 6.4 4 6.5 6o4 

7 6.5 - 5.8 
(h62 ) 9 4.2 - 4.7 
0 3o4 4.9 
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Table 9« (Continued) 

t 2 
Indices KFQ ' e ~B ~S Indices KF. 

t p 

ĉ'e-B-S 

(h-11-2) 
0 
1 
2 

6 
10 

11.0 
4.6 
9.8 
6.2 
12.0 
7.6 

9.9 
4.1 
8.8 
5.6 
12.0 
6.6 

(h*12 •2) 
10.4 1 9.7 10.4 

2 6.7 — 7.6 
5 5.9 5.7 
6 4.2 - 3.3 

(h»13 •2) 
0 4.4 - 4.3 
3 4.2 - 3.3 
4 12.7 - 8.4 

(h*l4'2) 
0 4.6 4.3 
1 4.9 5.4 
4 5.3 4.4 

(h'15-2) 
2 4.8 4.1 
6 5.9 4.9 

(h03) 
-25.6 1 29.2 -25.6 

3 24.6 22.4 
4 4.0 - 2.5 
5 7.9 - 7.3 
9 7.1 7.4 
11 4.8 - 5-9 
13 7.2 6.8 

(hl3) 
25.6 0 29.2 25.6 

4 51.1 44.6 
8 23.9 25.7 
12 8.5 8.1 

(h23) 

7 5.1 - 4.9 
11 11.1 -11.9 
15 7.5 - 5.5 

(h33) 
24.6 0 24.6 -22.3 

2 35.7 -34.0 
6 23.4 -27.6 
10 11.2 -13.2 

(h43) 
0 4.0 2.3 
3 27.7 34.3 
5 6.4 7.8 
7 12.4 12 o4 
9 10.9 11.7 

(b53) 
0 7.9 7.2 
1 4.9 4.4 
4 16.2 18.8 
6 8.4 — 9.6 

(h63) 
37.6 -38.7 1 37.6 -38.7 

5 20.9 -20.0 
7 11.2 -12.0 
9 8.2 - 8.0 
15 5.1 - 5.4 

(h73) 
4 
6 
8 

(h83) 
5 
7 
9 

(h93) 
0 

10.4 

iS:l 

1:1 
6.4 

7.1 

11.4 

" 9ei1 11.4 

4.4 
11.2 
8.6 

- 7.4 
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Table 9• (Continued) 

t 2 
Indices KFQ Fc'e~E-S Indices KF. 

t o 
FC'S-BS 

2 
6 
10 

8.9 
11.8 
8.8 

(h'10'3) 
1 17*6 
5 13.4 
11 5.1 

(h-ll-3) 
0 4.8 
2 6.0 
4 7.1 
8 9.3 

12 5.4 

(h#12»3) 
3 8.8 

(h-13«3) 
0 7.2 
2 6.7 
6 8.2 
10 5.1 

(h-l4«3) 
3 4.7 

(h-15-3) 
2 
4 

(h(34) 

6.0 
6.0 

• 9-1 
-12.4 
- 8.3 

-15.9 

u:£ - 4 

l-l 
9.7 

4i5 

8.7 

6.8 
5.6 

2:1 
4.4 

2.9 
4.4 

0 20.8 -17.0 
1 15.0 15.5 
3 11.8 -11.4 
4 17.9 -19.3 
5 7.9 7.2 
6 5.7 - 5.1 
8 3.3 - M 10 8.6 — 8»7 

(hl4) 
0 15.0 15.5 

l 
7 

(h24) 

U 
23.6 
9.2 
10.3 

10.0 
- 3.1 
22.1 
10.4 
9.7 

2 21.5 18.5 
3 16.3 -18.2 
6 21.5 9.6 
7 4.8 5.0 
8 5.8 4.6 
9 5.5 - 5.9 
12 6.1 5.6 
13 4.8 - 5.7 

(h34) 
11.8 0 11.8 -11.3 

1 10.2 — 8.2 
2 7.0 - 5.6 
4 19.5 -20.4 
5 13.8 -12.8 
8 14.0 -12.7 
9 7.2 - 8.7 
12 6.0 - 4.1 

(h44) 
0 17.9 -19.2 
1 24.4 26.4 
2 2.9 1.9 
4 6.9 — 8.7 
5 14.9 12.8 
7 5.2 6.2 
9 5.9 4.5 
10 4.i — 3*0 
11 5.8 7.3 

(h54) 
0 7.9 7.2 
1 9.7 9.2 
2 8.3 8.9 
3 12.2 11.7 
6 11.4 10.9 
7 11.5 11.1 
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Table 9• (Continued) 

Indices KFo 
i p 

F VB-S c - Indices KF0 
1 p 

c -

3 7.1 7.2 5 4.3 - 4.4 
6 4.9 - 5.8 7 7.9 8.0 
12 6.4 - 3.9 - 3.9 

(h26) 
(h55) 

8.4 
2 13.1 15.0 

1 9.3 8.4 6 6.1 6.5 
5 14.2 13.9 8 5.8 5.4 
8 5.3 3.0 
9 9.5 9.9 (h36) 

— 6.1 1 5.9 — 6.1 
(h65) 

- 6.5 
5 9.8 -10.7 

1 6.7 - 6.5 9 6.9 - 7.1 
2 6.9 - 7.3 
4 5.8 6.7 (h46) 

11.4 5 6.8 - 5.0 0 11.4 -11.3 - 5.0 
U 8.9 - 9.0 

(h?5) 
9.4 - 9.8 3 9.4 - 9.8 (h56) 

6.0 1 6.0 5.0 
(h85) 3 9.0 9.6 
0 8.5 8.8 7 9.0 9.4 
3 6.0 5.4 

9.4 

4 5.4 6.9 (h66) 
0 M - 5.3 

(fa95) 
5.4 

2 6.1 6.9 
1 5.4 5.5 
5 8.6 8.5 (h76) 

1 6.8 - 6.6 
(h-10-5) 5 9.4 0.3 
2 7.3 — 9.0 5 4.5 - 8.6 
6 6.2 — 4.0 

(h86) 
(h»12. 5) 0 4.1 — 4.1 
0 6.3 7.5 2 5.8 5.9 
4 6.4 5.6 5.6 

(h96) 
(h06) 

-19.4 
3 6.5 5.8 

0 18.1 -19.4 
4 11.4 -11.3 (h°10.6) 
6 5.5 -

0 5.1 - 5.7 
8 4.1 — 4.1 
10 5.1 - 5.7 

(hl6) 
3 5.3 7.2 
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Discussion 

Trimethylindium is a tetramer (Figure 13) or pseudo-

tetramer with the geometry of a tetrahedron flattened along 

a four-fold inversion axis and related to its neighbors by 

centers of symmetry. The nearest metal atoms, within the 

tetramer, (Table 8, In̂ -In̂ , 5-24A) are bonded together by 

linear, asymmetric, electron-deficient methyl bridges with a 

short metal to carbon (In̂ -Ĉ ) distance of 2.15A and a long 

carbon to metal (In̂ -Ô ) distance of 3*10A. The metal atoms 

of one tetramer are bonded to metal atoms of another tetramer 

(In̂ -In̂ , 5»66A) by essentially linear, asymmetric, electron-

deficient methyl bridges with a short metal to carbon distance 
O 

(In̂ -Ĉ ) 2.12A and a long carbon to metal distance (In̂ -Ĉ ) 

of 3•59A. The latter long carbon to metal distance is 0.49A 

longer than similar bonds within the tetramer, hence the 

tetramers appear to be weakly linked and are not true mole­

cules . 

Since the sum of the van der Waals radii of methyl (2.OA) 

and indium (about 2.2A (24) ) is approximately 4.2A, it seems 

reasonable that even the longest bridge bond (3»59A) is in­

dicative of a significant interaction beyond the usual van 

der Waals interaction. One could possibly dispute the use of 

a van der Waals radius derived from the packing of hydrocar-
O 

bons for this case but a contraction of 0.6A does not seem 

very likely. Other evidence to support the long, external 
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LONG BRIDGE BONDS 

Figure 13. Tetramer of trimethylindium 
("bonds to neighboring tetramer s not shown; 
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to the tetramer, bridge bond is found by making a scale model. 

The only apparent reason for the flattened tetramer is that 

the long external bridge bond supports the tetramer, for the 

free tetrameric molecule could assume a planar configuration 

with little or no distortion of bonds. It is also to be noted 

that the structure is rather open and more efficient packing 

could exist if the external bridge bonds were not demanded. 

The metal-metal distance across the tetrahedron (distance 

between atoms related by C2 of Ŝ ) is 6.79A and the height 

of the tetrahedron (separation between sets of atoms related 

by C2) is 2.09A. 

The configuration of carbon atoms about a metal atom is 

that of a distorted elongated trigonal bipyramid with the 

metal atom in the center, the "normal" metal to carbon bonds 

extending from the center of the equilateral triangle to the 

vertices and the long bridge bonds extending from the metal 

atom to the apices (Figure 14). If one considers only the 

"normal" bonds the configuration of carbon atoms about the 

metal atom is essentially trigonal as is the monomer in the 

vapor as determined by Pauling and Laubengayer (26) by elec­

tron diffraction. 

Pauling and Laubengayer determined the indium-carbon 
O 

distance to be 2.16 ± .04Â and the carbon-indium-carbon angle 

to be 120° +2° for the most probable model. 
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© 

I 

6 
Figure 14. Local configuration of carbon atoms about a 

particular metal atom (idealized) 
C I C angle is experimentally I630 not 
180° 
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It is to be noted that the free, non-bridged, indium 
O O 

carbon distance (In̂ -Cg, 2.06Â) is 0.1A shorter than the indi­

um carbon distance given by Pauling and Laubengayer. This 

difference may be significant as Cruickshank's (54) signif­

icance test indicates. This test is, if is the difference 

between two bond lengths and S is the standard deviation of 

a particular bond, then, if 

Si ~ 1.645̂  the difference is not significant, 

2.32?1.6k5f the difference is possibly signifi­

cant , 

3 . 0 9 0 2 . 3 2 7 S  th e  d i f f e r e n c e  i s  s i g n i f i c a n t .  

Using the x-ray standard deviation of .04A, then 2.3276 -
O O 

.093A and the observed difference is 0.1A. It would be 

tempting to say that the difference is significant but it may 

not be because the <f value is perhaps somewhat higher due 

to the reduction of symmetry in the refinement. The electron 

diffraction estimate of error is also probably an under­

estimate because of the breakdown of the Born approximation 

for heavy atoms. There also has been recent discussion (55a) 

that the method of Hughes (55b) for estimating standard devi­

ations from least squares calculations underestimates the 

error as compared to Fourier methods of estimating error. 
B 2 A point to be noted is the temperature factors, ( ) 

(Table 8) for all atoms seem to be quite large, perhaps twice 

as large as that found in most structures. This is perfectly 
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consistent with the physical property that trimethylindium 

can be sublimed easily at room temperature. 

A possible interpretation of the bonding in pseudo-

tetrameric trimethylindium is to assume that the metal atom 

is trigonally hybridized (as indicated by the geometry) and 

the bridge carbon atom is at least partially trigonally hy­

bridized. Then the bridge bonding is through the pure pz 

orbitals of the metal and carbon atoms. This would give rise 

to a five-center four-electron problem (Figure 15a). Let us 

idealize the problem by assuming the long external bridge 

bond equal to the long bridge bond within the tetramer. Fur­

ther let us construct from a carbon p, orbital and a metal 
2 sp hybrid orbital a sigma bond orbital. By this means the 

problem is reduced to a three-center four-electron problem 

(Figure 15b). Admittedly these are severe approximations, 

but they do not alter the qualitative argument to be presented. 

Then we can construct molecular orbitals from these sigma 

bond orbitals ( 66 anâ the metal p2 orbital. Figure 

15b represents a molecular orbital ̂  = a ( d*  ̂2 ) + b/> z, 

another molecular orbital would be 2̂ = C( 6<fi ̂ 

is a bonding orbital and ̂ 2 is non-bonding with respect to 

carbon-indium-carbon interaction. The four electrons, those 

two-electron pairs that one would normally consider in two 

normal indium-carbon bonds, can be placed in the above two 

molecular orbitals and a closed shell diamagnetic situation 
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results. It is to be noted that this description delocalizes; 

one of the two electron pairs. The metal atom 4d_2 atomic 

orbital is also of the correct symmetry type (Figure 15c) to 

form bridge orbitals, $3 = ed̂ 2 +• f (<S 6̂ ) • Presumably 

this would be little different energetically from the non-

bonding (j> 2 orbital because of the high energy of the metal 

4dg2 orbital. A crude correlation diagram can be drawn from 

this discussion as shown in Figure 16. 

The bridge bonding in trimethylindium could be discussed 

in terms of a hyper conj uga ti ve effect. Consider the bridge 

bonding as before through the indium pz orbital, but combining 

not with the indium-carbon bond orbitals but with carbon-

hydrogen bond orbitals of the methyl groups. If we label the 

carbon-hydrogen bond orbitals as 2̂, 4̂» ̂ 5 and ô ̂  

the only combination of these orbitals that can interact with 

the indium pz orbital is ( Other 

combinations will be non-bonding with respect to metal-

carbon-hydrogen interaction because they will have nodal planes 

through the carbon-indium-carbon line and indium p<z cannot 

belong to such a representation. 

In principle, at least, one should be able to distinguish 

between these two descriptions experimentally. To achieve 

maximum overlap in the hyperconjugative description the 

hydrogen-carbon-hydrogen angle of the bridge carbon should 

be quite close to tetrahedral, but to achieve maximum; overlap 
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IN-C BOND ORBITALS M.O.'» IN ATOMIC ORBITALS 

Figure 16. Crude correlation diagram for bridge orbitals of 
trimethylindium. Vertical scale is in energy 
units and horizontal scale is metal to bridge 
carbon distance. The diagram is meant to be 
purely qualitative in nature 
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for carbon p_ bonding the hydrogen-carbon-hydrogen angle 

should be distorted toward a trigonal hybridization. No 

doubt, the methyl group will not be completely trigonally 

hybridized, but the point is that a distortion toward trigonal 

hybridization will favor the description in terms of carbon 

p„ orbitals over the hyperconjugative effect. 

Although the hyperconjugative description seems attrac­

tive on the surface it has some serious faults. In "classi­

cal" hyperconjugated systems such as toluene and trimethyl-

boron it is quite reasonable to remove electrons from carbon-

hydrogen bonds and displace them into carbon-carbon or carbon-

boron bonds. However, the same situation does not seem to 

exist for trimethylaluminum. The infra-red spectra of tri­

me thy laluminum dimer indicates the carbon-hydrogen bonds of 

the bridge carbon are no different from the other carbon-

hydrogen bonds in the molecule. Presumably the interaction 

between methyl carbon-hydrogen bond orbitals and indium or­

bitals would follow the same trend. In other words, it is 

not very likely that any electron density would be removed 

from low energy carbon-hydrogen bond orbitals and transferred 

to much higher energy long bridge indium-carbon orbitals. 

As the above discussion indicates, the knowledge of the 

configuration of the hydrogens in the bridge methyl groups 

would be very interesting. Unfortunately, x-ray crystal­

lography cannot locate hydrogen atoms in the presence of 
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heavy metal atoms. Ueutron diffraction of single crystals 

of trimethylindium would he capable of locating the hydrogen 

atoms, but even by this technique it is not a trivial problem. 

There are 27 hydrogen positional parameters (assuming no 

rotational disorder) to be determined. This would, no doubt, 

require three-dimensional data. Nuclear magnetic resonance 

would yield little information except to say that there 

exists at least two different types of hydrogen atoms. Infra­

red spectra would likewise yield little new information. 

The higher homologs of trimethylindium do not appear to 

be associated. Triethylindium melts at -32®C., 120° below 

trimethylindium. This is to be expected since adjacent carbon-
C 

carbon contacts within the tetramer are 3«7oA and twice the 

van der Waals radius of methyl is 4.OA. Thus, any increase 

in the bulk of the bridging group will exert large steric 

effects and tend to make the tetramer unstable. Also, in­

creasing the bulk of the external groups tends to force the 

tetramers further apart making the external bridge bond less 

stable. 

The covalent radius of thallium is not very different 
O O 

from indium (1.48A and 1.44A, respectively) and one might 

expect trimethylthallium to also be tetrameric. It is some­

what surprising that freezing point depression data of ben­

zene solutions of trimethylthallium indicates a monomer (56). 

This is especially surprising since the melting point (38°) 
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of trimethyl thallium is much higher than truly monomeric 

molecular solids such as tetramethyllead. 
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STRUCTURE OF GALLIUM TRIIODIDE 

Preparation and Properties of Gallium Triiodide 

" Gallium triiodide was prepared by the method of Corbett 

and McMullan (57) and given to us in sealed ampules by Dr. 

J. D. Corbett. This method consists of reacting stoichiomet­

ric amounts of elemental gallium and iodine in a vacuum sys­

tem. The compound was purified by vacuum sublimation at 

150°C. The ampules were opened in a dry box and small amounts 

of polycrystalline gallium triiodide were transferred into 

capillaries. Single crystals were grown by heating the capil­

laries, in an oil bath at the melting point of Gal̂  (210°C) 

and then slowly cooling the oil bath. 

Pure gallium triiodide is a lemon-yellow solid melting 

at 210°C. It is reactive to moisture and slightly soluble in 

dry ethyl ether (58). The pure compound can be sublimed at 

atmospheric pressure but only at 31+5°C» at which temperature 

some decomposition occurs. 

X-Ray Data 

Crystals of several orientations were found, but data 

were taken only with a crystal in which the [OOlJ direction 

was parallel to the capillary axis. Intensity data were taken 

of the hO.l and Ok̂  zones on the precession camera by means 

of timed exposures of 1, 2, .... 10, 15, 30 minutes and 1, 
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2, 4, 8, 16 and 48 hour duration. Weiss enter g intensity data 

were taken of the hkO zone by a combination of multiple film 

and timed exposure techniques. Lorentz and polarization cor­

rections for the hÔ  and Okl data were made by means of the 

chart due to Waser (45). The hkO Weissenberg data were cor­

rected for Lorentz and polarization factors on the I.B.M. 650 

with a program from Dr. D. H. Templeton. Higher layer photo­

graphs were also obtained to check the systematic extinctions, 

but no higher layer intensity data were obtained. All in­

tensities were estimated visually. 

Unit Cell and Space Group 

Gallium triiodide is orthorhombic with lattice constants, 

a = 18.29 + .02 I, 

b = 5-94 + .02 I, 
c = 6.09 + .02 I. 

The following systematic extinctions were observed; 

for hk/ data reflections absent for h + k = 2n + 1 

for hO Q data reflections absent for h = 2n+ 1,̂ = 2n+ 1 

for Ok/ data reflections absent for k = 2n +1. 

The possible space groups are then Cmc2̂ , C2cm and Cmcm 

(49). With four Gal̂  molecules per unit cell /°calc = 4.53 

and /ykg = 4.15 g/c.c. The analysis given below indicates 

Cmcm to be the most probable space group. 
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Determination of Atomic Positions 

Before a Patterson projection was computed a systematic 

elimination of sets of crystallographic positions for each 

space group was carried out in so far as possible based only 

upon the x-ray data. 

Consider first space group Cmcm with the positions as 

given in Table 10. The four gallium and twelve iodine atoms 

could be distributed in the following ways : 

(1) 4 Ga (4 I) in set a, 

4 Ga (4 I) in set b, 

8 I in set c with parameters y and y1. 

(2) all atoms in set c with parameters y, y', y11, y'1'. 

(3) 8 I in set d, 

4 Ga (4 I) in set b, 

4 Ga (4 I) in set a. 

(4) 8 I in set d, 

4 Ga (4 I) in set b or a, 

4 Ga (4 I) in set c. 

(5) 8 I in set d, 

4 Ga and 4 I in set c with parameters y and yl. 

(6) same as (3) but 8 I in set e. 

(7) same as (4) but 8 I in set e. 

(8) same as (5) but 8 I in set e. 

(9) same as (3) but 8 I in set f. 

(10) same as (4) but 8 I in set f. 
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Table 10. Summary of positions and formulae for space group 
Cmcm 

origin at center (2/m) 

Sum- Wycoff Point Coordinates of equivalent Conditions 
ber nota- sym- positions limiting 
of tion metry (0,0,0; i-,i*,0) + possible 
posi- reflections 
tions 

16 

8 

8 

8 

8 

4 

4 
4 

g 

f 

e 

d 

c 

b 
a 

m 

m 

2 

ï 

mm 

x,£,z; x,y,z; x,y,i-z; 
x,y,£-*z; X,y,z; x,y,z; 
x,y,£+z; x,y,i-z. 

x,y,i; x,y,£; x,y,3/4; 
S,y,3/4. 
0,y,z; 0,y,z; 0,y,£-z 
0 ,y,l+z. 
x,0,0; £,0,0; x,0,£; 
X,0,£. 

"i"»3/4)0; 

o|y,i; 6,y,3A. 

2/m 0,i,0; 0,£,i 
2/m 0,0,0; 0,0,i 

General: 
hk/:h-tic=2n 
Okj0: (k=2n) 
hO/î Jt=2n 

(h=2n) 
hkOi (h-+k=2n) 
h00î(h=2n) 
0k0ï(k=2n) 
OOfr (& =2n) 
Special: as 
above plus 
No extra 
conditions 
No extra 
conditions 
hki : Jt =2n 

hk/:h,j? =2n 
) 

No extra 
conditions 
hkl;/ =2n 
hk/s Jt =2n 

h4k = 2n F(hkl) = 16 Cos 277 hx Cos 2frky Cos 2ÏÏÛ z 

 ̂~ 2n F(hk̂ ) = F(hkg) = F(hki) = F(hkA = F(hki) 

h-tic = 2n F(hk̂ ) = -16 Cos 277" bx Sin 27T ky S in 2JT lz 

4 - 2n+1 F(hk̂ ) = F(hk/) = F(hk̂ ) = -F(hU) = -F(hk̂  

P(xyz) = |r- £ F2(hkl) Cos 2TT hx Cos 2 77"ky Cos 2 w£z 
c 0 0 0 
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Table 10. (Continued) 

„ f> /V y*= 2n 
P(xyz) = IT Z 5- F(hkl) Cos 2 Trhx Cos 2 7Tky Cos ZTfx z 

c l 0 0 0 

2? v /= 2n+ 1 _ 
- 2. F Z F(hk6) Cos 2JThx Sin 2fl"ky Sin 2 jin 

0 0 0 J 

Summary of positions for space group C2cm 
origin on 2 

Num- Wycoff Point Coordinates of equivalent 
ber nota- sym- positions 
of tion metry (0,0,0; £,£,0) + 
posi­
tions 

8 

4 

4 

8 

x,y,z; x,y,z; 
x,y,£-z; x,y,£+z. 

m 

2 

x,y,i; x,y,3A-

XjO.O; x,0,£. 

Conditions 
limiting 
possible 
reflections 

General: 
hk/ï h+k=2n 
hkO: h-fk=2n 
0kl: k=2n 
hÔ s i=2n, (h=2n) 
001: l=2n 
OkOï k=2n 
hOO: h=2n 
Special: as 
above plus 
No extra 
conditions 
hk f: J =2n 

Summary of positions for space group Cmc2̂  

x,y,z; x,y,z; 
x,y,£+z; x,y,£+z. 

m 0,y,z; 0,y,£-fz. 

General: 
hk/7: h-*k=2n 
Okf: k=2n 
hÔ : /=2n;h=2n 
hkO: h+k=2n 
hOO: h=2n 
OkO: k=2n 
00 f t  £=2n 
Special: as 
above only 
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(11) same as (5) but 8 I in set f * 

(12) same as (3) but 8 I in set g. 

(13) same as (4) but 8 I in set g. 

(14) same as (5) but 8 I in set g. 

Since there is not a normal decline along hOO, i.e., an 

x parameter is indicated, combinations (1), (2), (3), (4), 

(5)» (9)> (10), (11) are eliminated from consideration. Fur­

ther, combination (6) demands that, for example, for 3k//re­

flections should be absent when & = 2n + 1. However, these 

reflections are particularly strong hence, combination (6) 

can be eliminated. Before a Patterson projection was computed 

the only combinations possible for Cmcm were (7), (8), (12), 

(13) and (14). 

Consider next space group C2cm, the possible combinations 

for this space group (Table 10) are as follows: 

(15) all atoms in set a with x parameters x, x1, x'', x1'1. 

(16) 4 Ga (4 I) in set a, 

4 Ga (4 I) in set b, 

8 I in set a with x parameters x', x11. 

(17) 4 Ga (4 I) in set a, 

4 Ga (4 I) in set b, 

8 I in set b with xy parameters x, y; x', y1. 

(18) 4 Ga and 4 I in set a with x parameters x, x', 

8 I in set b with x,y parameters x'1,y!',x''1,y'''. 
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(19) 4 Ga and 4 I in set b with xy parameters x,y; x' ,y', 

8 I in set a with x parameters x11, x'''. 

(20) all atoms in set b with xy parameters x,y; xr ,yr ; x", 

yf 1 ; x'1 ', y*1 '. 

(21) 8 I in set c, 

4 Ga and 4 I in set a with x parameters x, x'. 

(22) 8 I in set c, 

4 Ga and 4 I in set b with xy parameters x,y; xf,y'» 

(23) 8 I in set c, 

4 Ga (4 I) in set a, 

4 Ga (4 I) in set b. 

Combination (15) demands, e.g., for 3k J! the absence of 

reflections for which $ = 2n + 1. As mentioned above, this 

is not so and combination (15) can be eliminated. Therefore, 

for space group C2cm the possible combinations were (16) 

through (23) before computing a Patterson projection. 

Consider finally space group Cmc2̂ , the possible combina­

tions for this case are as follows : 

(24) all atoms in set a with yz parameters, y,z; y'z1; y11, 

z' ' ; y'1',z!1'. 

(25) 8 I in set b, 

4 I and 4 Ga in set a with yz parameters y,z; y1,z'. 

Combination (24) does not have an x parameter and hence 

can be neglected. Therefore, the only possible combination 

for Omc2̂  is (25). 
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The computed Patterson projection onto the (100) plane 

is shown in Figure 17» It is to be noted that only two*peaks 

appeared, one at the origin and one at y = 0, z = -&. Now 

consider this result in terms of possible combinations of 

positions in space group Cmcm. It is easily seen that com­

binations (7)» (8), (12) and (13) all require peaks in the 

Batter-son projection at z = 1/4. Therefore, the only possible 

combination for Cmcm is (14). The Patterson can be interpret­

ed for this combination to give the eight-fold iodine a y 

parameter of y = ± 1/4, the four-fold iodine a y parameter of 

y = + 1/4, and the gallium a y parameter of y = +• 1/4. 

Another possible interpretation of the Patterson would be to 

make all the y parameters equal to y = i. However, this lat­

ter interpretation would place the gallium and four-fold io­

dine atoms at identically the same position and it can be 

ruled out on this basis. 

Next, let us consider the above Patterson in terms of 

combinations of positions for C2cm. Combinations (lé), (17), 

(18) and (19) can be eliminated since they demand a peak at 

z = 1/4. Further the eight-fold iodine to eight-fold iodine 

vectors of combination (21) give the following possibilities ; 

z=i, y = 0;z=i, y = + 1/4; z = + 1/4, y = 0; z = + 1/4, 

y = + 1/4 for this projection. The second and fourth of 

these would require a peak at y = 1/4 for the four-fold iodine 

to eight-fold iodine and gallium to eight-fold iodine vectors. 
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c 

0,0  

b 

Figure 17* Patterson projection of Gal^ onto the (100) 
plane ^ 
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The third would require a peak at z = 1/4 for the four-fold 

to eight-fold vectors. The first possibility degenerates to 

all atoms being in set a, and this is combination (15)» which 

has been eliminated. Since there are no peaks at z = 1/4 or 

y = lA combination (21) is eliminated. 

For combination (22) the eight-fold iodine to eight-fold 

iodine vectors will be the same as for (21) above with the 

same possible interpretations. The first two interpretations 

(Ig z = + -& y = Q ; z = + | y = + 1/4) can be discarded 

since any vector between set b and c would demand a peak at 

z = 1/4, and no such peak is observed. The third and fourth 

possibilities (Ig z = + 1/4, y = 0; z = + 1/4, y = + 1/4) de­

generates to all atoms in set b which is combination (20)« 

Combination (23) can be ruled out since a vector between 

set a and set b would demand a peak at z = 1/4. Therefore, 

the only possible combination remaining for space group 02cm 

is (20), all atoms in set b. 

Finally let us examine the OkJ? Patterson projection in 

terms of space group Cmc2^. Considering combination (25), 

the eight-fold to eight-fold iodine vectors can be interpreted 

to give the parameters, (z = z, y = + 1/4; z = z y = + •£)• 

The four-fold iodines and galliums must then have parameters ; 

Ga z' = z y* = + 1/4, 1̂  z1 ' = z y' ' = + 1/4 or Ga z' = z y = 

+ I^zlf=z y = where z could also be £ + z. 
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The computed Patterson projection onto the (010) plane 

is shown in Figure 18. Only two peaks are observed, one at 

the origin and one at z =0, x = . Let us now examine 

the three remaining possibilities (Cmcm, combination (14); 

C2cm, combination (20) and Cmc2, combination (25) ) in terms 

of this projection. For Cmcm combination (14) this Patterson 

plus the previous one would give the following parameters: 

CO H X = .166 y = lA z = ± lA 

14 M II O
 

y = 3A z = lA 

Ga 

O
 II M y = lA z = lA 

For C2cm combination (20), the Ok^ Patterson would be iden­

tical in interpretation as for Cmcm, combination (14), i.e., 

all y parameters y = + 1/k. However, this would demand more 

than one peak for the hO H Patterson and in this way C2cm can 

be discarded. Further evidence for this argument will be 

found in the reliability index and in calculation of structure 

factors for unobserved reflections. 

Finally for Cmc2^, the hO Jt Patterson does not allow one 

to distinguish between the two interpretations of the 0k-£ 

Patterson. However, one can examine the structure factor 

expression and see that for y = all reflections for which 

£ = 2n +1 must be missing or at least very weak. This is 

not correct and, therefore, only the first interpretation is 

possible. 
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Figure 18. Patterson projection of Gal^ onto the (010) plane 
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The only possible space groups are then Cmcm with the 

aforementioned parameters and Cmc2^ with essentially the same 

parameters except for an additional degree of freedom in the 

z parameters ; i.e., it will only be different from Cmcm if 

the z parameters of different sets are not separated by exact­

ly -5-. This difference of not exactly £ would have to be quite 

small or it would have been detected in the Patterson projec­

tions . 

Structure factors were computed, assuming space group 

Cmcm, for the Ok £ zone, and a Fc/FQ vs. sin2 8// 2 plot was 

made. The eight-fold iodine x = .166, y = 1/4, z = 1/4; four­

fold iodine x = 0, y = 3/4, z = 1/4; gallium x = 0, y = 1/4, 

z = 1/4 were used as input data for a least squares refine­

ment. The y parameters of all sets were pushed off y = 1/4, 

3/4 collectively, in pairs and singularly and in both direc­

tions, but all y parameters refined to less than 1/4, greater 

than 3/4. From the structure factors calculated by the least 

squares analysis an electron density projection onto the (100) 

plane was computed and is shown in Figure 19. It is obvious 

from a glance at this projection that all atoms overlap con­

siderably and accurate parameters could not be obtained from 

either a Fourier or a least squares analysis of this zone. 

However, this zone could be used to decide whether or not 

Cinc2^ was a more probable space group than Cmcm. Attempts 

were made to refine the structure in space group Cmc2^ by 
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Figure 19• Electron density projection of Galg onto the (100) plane 
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varying z parameters of all sets collectively, in pairs and 

singularly and in different directions from z = 1/4. However, 

the structure was not refined further by this means and it 

was decided that Cmcm was a more probable space group than 

Cmc2^. 

Structure factors, Fc/FQ plot etc., as for the Ok Q zone, 

were computed for the hO j[ zone and used as input data for 

least squares refinement assuming space group Cmcm. Several 

cycles were run and from the structure factors calculated by 

the least squares analysis an electron density projection 

onto the (010) plane was computed and is shown in Figure 20. 

As above, attempts were made to refine the structure as non-

centrosymmetric (Cmc2^). Again these attempts proved futile 

and gave further weight to the correctness of Cmcm as the 

most probable space group. 

Results from the Ok,/ and hOleast squares analysis 

were used as input data for a least squares refinement of the 

hkO zone. Several cycles were computed and the structure 

factors calculated in the least squares computation were used 

to compute an electron density projection onto the (001) plane 

as shown in Figure 21. 

It is to be noted that the four-fold iodine and gallium 

atoms could not be resolved in any one of the three projec­

tions. If the correct space group is Cmcm then the only 

parameters for these atoms which are not clearly resolved are 
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Figure 20. Electron density projection of Galg onto the (010) plane. Eight-fold 
iodine atom is clearly resolved, but four-fold iodine and gallium 
atoms are not resolved along x = 0 
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Figure 21. Electron density projection of Galg onto the (001) plane. The 

eight-fold iodine atom is resolved but not the four-fold iodine 
and gallium atoms along x = 0 
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the y parameters for the two sets. The least squares analysis 

of the hkO zone consistently refined both parameters to the 

same positions, given in Table 11, when they were both placed 

at values less than y = 1/4, greater than 3/4. The parameters 

of the four-fold iodine and gallium atoms given by the hkO 

least squares calculation were regarded as essentially cor­

rect. 

Structure factors were also computed for the unobserved 

reflections of the hkO zone with the results of the above hkO 

refinement, and they were all small, further supporting the 

correctness of the structure. This calculation also supports 

the correctness of the space group Cmcm and not C2cm, which 

would demand three additional x parameters. 

The space group C2cm is ruled out by the agreement index 

(R-^) for the hkO zone, Table 11. If three additional x para­

meters were needed one would hardly expect the agreement to 

be this good. 

Final parameters, R factors and scale factors are given 

in Table 11. Bond distances are given in Table 12. 

Final structure factors are tabulated in Table 13. 

Unfortunately, the above least square and Fourier anal­

ysis are ambiguous in that the parameters of the four-fold io­

dines and the galliums can be interchanged without altering 

either the electron density projections or the least squares 

computation. This interchange would give a completely dif-



www.manaraa.com

84 

Table 11. Least squares results for Gal-

Ri -

Zone 

hkO 
Ok# 
hO 'jg 

I  / V FC l l  

f IV i 

«1 % 

15.7 
22.0 
18.0 

^ lFc-Fc I i2 

E3 = ? I'ol i2 

% 

5.5 

K (Scale 
factor) 

17.0 

!:? 

Atom 

8-fold Iodine 

4—fold Iodine 

Gallium 

Parameters 
x y 
.168 .224 

.000 .753 

.000 .245 

z 

.250 

.250 

.250 

V JL 

.003 

.000 

.000 

S y 

.007 

.010 

.010 

- z 

.000 

.000 

.000 
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Table 12. Bond distances 

Atom A Atom B Distance A-B (A) 

Ga 4-fold I 
(almost directly above or 
below along c) 

Ga 4-fold I 
(directly along b) 

Ga 4-fold I 
(directly along b) 
(next unit cell) 

Ga 8-fold I 
(at same Z value as Ga) 

8-fold I 8-fold I 
(distance between sleets) 

8-fold I 8-fold I 
(along sleet) 

8-fold 8-fold I 
(along sleet) 

Ga Ga 
(directly along b) 

Ga Ga 
(directly along b) 
next unit cell 

4-fold I 8-fold I 
(closest) 

4-fold I 4-fold I 
(directly along b) 

4-fold I 4-fold I 
(directly along b) 
next unit cell 

3.04 + .02 

3.02 + .08 

2.92 + .08 

3.07 + .05 

4.29 + .07 

4.05 + .07 

4.50 ± .07 

4.30 + .08 

4.21 + .08 

4.32 + .07 

4.28 + .08 

4.23 * .08 
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Table 13. Final structure factors 

All structures positive unless otherwise 
indicated 

Indices kF_ Fce 
-M Indices kF„ V 

-M 

Okl zone 4 36.0 23.4 
6 7.6 -13.1 

(OkO) 
2 57.8 -68.4 (6o/) 

-13.1 

4 4l.l 32.4 0 29.3 37.4 
6 11.6 11.1 2 30.1 -31.4 
8 6.9 2.6 4 

6 
20.4 
11.3 

20.5 
-11.8 

(0k2) 
(10-0./) 0 60.0 -71.4 (10-0./) 

5.4 2 71.9 54.7 0 5.4 6.2 
4 22.5 -27.0 2 7.6 - 6.0 
6 15.7 9.4 

(12-0./) 
15.7 9.4 

(12-0./) 
(0k4) 0 26.9 23.4 
0 43.2 38.4 2 18.9 -20.5 
2 21.3 -30.7 4 15.9 14.6 
4 20o6 16.3 6 5.9 - 8.9 
6 8.1 5-9 

(18.0 -i) 
5-9 

(18.0 -i) 
(0k6) 0 15.7 13.1 
0 11.9 -16.3 2 11.1 -11.8 
2 15.9 13.4 4 9.4 8.9 
4 7-4 7.4 6 4.8 - 5.9 7-4 7.4 

8 3.6 3*6 
(0k8) 

(20«0./) 0 7.2 5.5 (20«0./) 
5.8 

5.5 
0 5.8 5.1 

(Okl) 0 6.2 
2 9.2 -11.9 2 8.0 - 6.4 
4 9.2 -12.1 
6 6.9 6.9 hkO zone 

(0k3) (hOO) 
64.8 2 6.4 - 7.9 6 64.8 73.2 

4 7.5 — 8.6 10 6.9 8.4 
6 7.8 5.1 12 41.9 42.4 

h0l 

7.8 5.1 
18 22.0 20.5 

h0l zone 24 8.5 8.4 

(OOjB (hlO) 
- 4.6 2 29.4 -37.4 9 9.3 - 4.6 
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Table 13. (Continued) 

Indices X 
F e"M c Indices kFc >ce-M 

(h20) 12 24c 5 19-9 
4 8.8 -11.1 
6 71.1 -57.5 (h50) 
10 10.2 - 7.1 9 11.9 - 8.8 
12 3 5-5 -34.8 

9 11.9 

18 14.1 -17.2 (h60) 
6 21.6 -11.9 

(h30) 
-11.9 

1 8.7 - 9.2 (OkO) 
3 14.6 13.3 2 63.3 -70.I 
5 14.8 — 8.7 4 48.3 35-8 

6 13.6 -13 06 
(h40) 

30.6 

13.6 -13 06 

6 29.1 30.6 

ferent structure. Arguments in favor of the structure given 

initially are presented below. 

Discussion 

As mentioned above, the two-dimensional x-ray data alone 

cannot decide between two possible structures. Specifically, 

one can interchange the four-fold iodine and gallium sets and 

the aforementioned analysis remains unchanged. The two pos­

sible structures will be individually discussed as the pre­

ferred" structure and the "alternate" structure and the 

reasons for assuming the "preferred" one to be correct will 

be given. 
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"Preferred" structure 

The preferred structure consists of infinite sheets made 

up of a rectangular, almost square, array of alternate gallium 

and iodine atoms. Each gallium atom has, in addition to the 

four iodine atom neighbors in the array, two neighboring io­

dine atoms above and below the plane formed by the array. 

This gives each gallium atom a coordination number of six 

(Figure 22). 

The rectangular array is parallel to the (100) plane and 

the gallium-iodine distance in the [ooij direction is c 

or 3«0kJL in the [bio] direction the gallium-iodine distance 

alternates between 2.92 and 3.02A. The two external (external 

to the array) iodine neighbors of the gallium atom have a 
O 

gallium iodine distance of 3«0%& and they are separate! by 
O 

4.29A (van der Waals distance) from the corresponding iodine 

atoms of an adjacent array (Figure 23)• This should produce 

easy (100) cleavage. 

The gallium-iodine distances in the array are all about 

3.OA. Since, the sum of the ionic radii of gallium and iodide 
O O 

ions is 2.7/A and the sum of the covalent radii is 2.54A, the 

distances tend to favor ionic bonding. However, the observed 
O 

distances are almost 0.3A longer than even the sum of the 

ionic radii. 

A crude estimate of the bond energy of a gallium-iodine 

electron pair bond can be obtained from the heat of formation 
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(oT^o'sT 3 oYTo) 
% / 

/ 
D°DaO° 
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p-OsOsO?)3 
*2.92A^| 

3.04 A 

3.02 A' 

o Z \ 
I I 

Go WI W±I 

Figure 22. Sheet structure of Gal^ 
Full circles represent gallium and iodine atoms 
in the rectangular array in the plane of the 
paper. Dotted circles represent iodine atoms 
external to the array above and below the 
plane of the paper 
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O Go IN PLANE OF PAPER 

( ) Got 1/4 

\ 
I IN PLANE 

OF PAPER 

\ it 1/4 

X 

Figure 23. End on view of the sheet structure of Gal̂  

The sheet is defined by the gallium atoms in 
the horizontal line. The distance between 
the closest external iodine atoms of neighbor­

ing arrays is 4.29A. Distance between 
neighboring external iodine atoms along the 

O 
array is either 4.50 or 4.05A 

1 
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of crystalline Galg from the elements in their standard states. 

Using the tabulated values ; of the heat of formation of crys­

talline Galg, p5l»2 Kcal./mole (59)^ the heat of sublimation 

of Ga (65.14 Kcal./mole), the heat of sublimation plus the 

heat of dissociation of iodine (25.48 Kcal./mole), the heat 

of vaporization of Ga^I^ (27 Kcal./mole) and a reasonable 

estimate of the heat of fusion of crystalline Galg (10 Kcal./ 

mole) one easily calculates the bond energy of a Ga-I electron 

pair bond. This bond energy was found to be 40 Kcal./mole, 

assuming eight electron pair bonds per dimer. The bridge and 

external bonds of the dimer are undoubtedly different, but 

no data exist to differentiate between them. 

If one assumes the p and p orbitals of the iodine atom x y 

to be in the plane of the array and the pz orbital perpen­

dicular to the array then each iodine could form a i- electron 

pair bond to a gallium atom. This would mean, on the basis 

of the calculation of the previous paragraph, that the bond 

energy of a gallium-iodine bond in the array would be ap­

proximately 20 Kcal./mole. The energy of the external bond, 

considering it as an electron pair bond, would then be 40 

Kcal./mole. One would anticipate that the external Ga-I 

bond would be 0.18A shorter, if Pauling's rule is used (60), 

than the Ga-I bonds in the array. It is puzzling, indeed, 

that this shortening is not observed. Since all the iodine 

atoms are separated by distances very close to the van der 
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Waals radius of iodine it may well be that a compromise has 

been reached at the observed distance between stronger bonds 

and larger van der Waals repulsive energies. However, it is 

somewhat difficult to see how the van der Waals forces can 

be large enough to distort a relatively strong bond of bO 

Kcal./mole as much as is observed. 

As mentioned in the Introduction, Barnes and his co­

workers have measured the nuclear quadrupole resonance spectra 

of polycrystalline gallium triiodide. The gross aspects of 

the iodine resonance consist of two lines separated by 1 per 

cent of the resonance frequency and a third line about 15-

20 per cent of the resonance frequency lower. The nuclear 

quadrupole resonance of Ga^ and Ga^ have also been ob­

served. On the basis of these resonances it has been as­

sumed that iodine bridged dimerie molecules exist in the 

solid. The first two lines of the iodine spectrum have been 

attributed by Barnes et al to the terminal iodine atoms of 

the dimer. The 1 per cent splitting has been attributed to 

crystallographically independent, though chemically similars 

atoms. The asymmetry parameter (fi ) of the so called bridge 

iodines has been computed to be 23«7 (h, = ̂ xx'̂ yy where 

ẑz 
2 2 qxx: d x )* The asymmetry parameters of the so called 

terminal iodines have been computed to be 0.9 and 2.8. The 

latter small asymmetry parameters were attributed by Barnes 

to cylindrically symmetrical Ç bonds„ 
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The I-Ga-I "bridge angle, assuming dimer s in crystalline 

Gal^j was computed to be 82° from the nuclear resonance data. 

The results of our x-ray investigation clearly indicate an 

angle of 90° for the I-Ga-I angle in the crystalline array. 

It is not at all clear whether or not the distortion of the 

square array is sufficient to give the observed field gradient 

and asymmetry parameters. For crystalline Gal^ the 1 per cent 

splitting cannot be attributed to crystallographically in­

dependent terminal atoms since the external iodine atoms be­

long to a special eight-fold set and all other iodines are 

in the array. This small splitting could possibly arise from 

the external iodine atoms that are separated by 4.05A, i.e., 

an iodine-iodine contact interaction. In crystalline iodine 

a similar splitting and interaction occurs (6l), but here the 
O 

closest intermolecular distance is 3-6Â. 

Barnes (62) has also observed that the Ga^ and Ga?^~ 

resonances disappear at liquid nitrogen temperatures, but the 

so called bridge and terminal iodine resonances remain. It 

is not at all clear from the structure what happens at liquid 

nitrogen temperatures that would account for this phenomenon, 

except possibly all y parameters changed to exactly 1/4 or 

3/4. This would increase the local symmetry about the gallium 

atom, but it would also seem to increase the symmetry about 

the iodine atom, within the array. 



www.manaraa.com

9H 

It is a distinct possibility that the nuclear quadrupole 

resonance experiments are much too sensitive to electronic 

environments to be capable of ascertaining gross geometric 

features in the solid state. For example, the crystal struc­

ture of CrClg and AlClg are very much alike except that the 

local symmetry about an aluminum atom is lower than about the 

Cr atom. Their nuclear quadrupole resonance spectra are, 

however, remarkably different. In solid AlCl^ neither the 

chlorine nor the aluminum resonances have been found in spite 

of experiments with large pure samples. On the other hand, 

both the chromium and the chlorine resonances were easily 

detected. This is, indeed, a disturbing situation for anyone 

who hopes to decide molecular or ionic geometry by correlating 

nuclear quadrupole resonances. 

Disastrous as the above may seem for the nuclear spec-

troscopist, it need not be so. X-ray crystallography can 

locate atoms and decide molecular geometry but can ascertain 

little concerning finer details of electron distribution and 

chemical bonding. It seems that a cooperative spirit between 

the nuclear spectroscopist and the x-ray crystallographer 

might prove very informative to both groups. 

"Alternate" structure 

The alternate structure would consist of interchanging 

the four-fold iodine and gallium positions. This would leave 
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the array unchanged but would make the external iodine atoms 

nearest neighbors to the iodine atoms in the array as in the 

"preferred" structure. 

This situation is not very likely chemically, for if one 

wishes to say that a good share of the bonding is ionic then 

this would place three relatively negative charges close to­

gether. This could give each iodine atom in the array six 

nearest neighbors, two of which would be iodines and the other 

four galliums. Gallium would then have a coordination number 

of only four, and the configuration about it would be square 

planar. In the circumstances it is deemed justifiable to 

drop consideration of the alternate structure. It should be 

added that in principle, at least, the two structures could 

be differentiated, but the overlapping of peaks is sufficient 

to make this, in practice, difficult if not impossible with 

only two-dimensional projections. 
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